Sprache:


sakurajun: Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability


Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

8 Jan 2021 in 06:56am

[url=www.chinactivecarbon.com/products/coconut-carbon-gold.html]coconut activated carbon gold[/url]Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation),[url=www.chinactivecarbon.com/]activated carbon price[/url] the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration

Kommentar hinzufugen

Gaste können nicht diesen Service nutzen Blog Kommentare hinzufugen. Bitte loggen Sie ein.

Rating

Ihre Bewertung: 0
Alle: 0 (0 Stimmen)

Tags

No Tags